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Abstract

The vibration of ring-stiffened cylinders associated with arbitrary boundary conditions is investigated. Displacements of
cylinders can be easily described by trigonometric functions when the cylinders are shear diaphragms supported at both
ends. As to other boundary conditions, exponential functions are used and axial factors are introduced. An eighth-order
algebraic equation for this axial factor is derived. The physical meaning of the axial factor is studied. Both analytical and
numerical studies prove that, when the axial factor is a pure imaginary number, the cylinder appears to have a certain
length with shear diaphragm boundary conditions. The effects of shell parameters and hydrostatic pressure on the axial
factor are determined in the analysis.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The use of cylindrical shells is common in many fields, such as aerospace, mechanical, civil and marine
engineering structures. To effectively enhance the flexural and axial stiffness, stiffeners are frequently used.
Many engineers have considerable interest in the free vibration of thin circular cylindrical shells and numerous
investigations have been devoted to this, e.g. Ref. [1-6]. The methods used to study the vibrational behavior of
thin shells range from energy methods based on the Rayleigh—Ritz procedure to analytical methods in which,
respectively, closed—form solutions of the governing equations and iterative solution approaches were used.
The circular cylindrical shell supported at both ends by shear diaphragms (SD-SD) has received the most
attention in the literatures. This is due to the fact that one simple form of the solutions to the eighth-order
differential equations of motion is capable of satisfying the SD-SD boundary conditions exactly. The
frequency equation is a polynomial of order six in the shell frequency parameter. When solving problems with
arbitrary boundary conditions, many authors [7—11] select general solutions of shell equations. They have
chosen exponential functions for the modal displacements along the axial direction, substituted them into the
equations of motion and then enforced the eighth-order frequency determinants which are coupled together.
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Nomenclature i V-1
J> torsion constant of stiffener cross-section

Ar sectional area of the stiffener k I?/12R?
B stretching stiffness of the shell, B = Eh/ L length of the shell between ends

1—u? m axial mode number
b, width of the rectangular stiffener n number of circumferential waves
D bending stiffness of the shell, D = Eh?/ 0 hydrostatic pressure

12(1—p?) R radius of the mean surface of the shell
d> stiffener spacing t time
E modulus of Young’s elasticity x, 0, z cylindrical coordinates (Fig. 1)
e eccentricity of the centroid of the ring U,, V,, W, amplitudes of the displacement in the

stiffener section x, 0 and z directions
G shear modulus u, v, w components of the displacement in the x,
h thickness of the shell 0 and z directions
h h+ Ay/d» A axial factor
h, height of the rectangular stiffener u Poisson’s ratio
Iy sectional moment of inertia of the stiffen- 0 mass density

er about the centroid of the stiffener w circular frequency
I sectional moment of inertia of the stiffen-

er about the middle surface of the shell

Recently, many new approaches were developed for cylinder shell for free vibration analysis of
cylindrical and conical shells. Xiang et al. [12] use the state-space technique to derive the homogenous
differential equation system for a shell segment and a domain decomposition approach is developed to
cater to the continuity requirements between shell segments. Bingen Yang and Jianping Zhout [13] have
used the distributed transfer functions of the structural components, and then various static and dynamic
problems of stiffened shells have been systematically formulated. With this transfer function formulation,
the static and dynamic response, natural frequencies and mode shapes and buckling loads of general
stiffened cylindrical shells under arbitrary external excitations and boundary conditions can be
determined in exact and closed forms. Civalek Omer [14] proposes a discrete singular convolution method
for the free vibration analysis of rotating conical shells. Frequency parameters of the forward modes
are obtained for different types of boundary conditions, rotating velocity and geometric parameters.
A wave propagation approach [15-18] is also developed to predict the natural frequency of the
cylinders. This method combines an exact frequency wavenumber characteristic formula with appropriate
beam functions in the axial direction to give predictions of natural frequencies of circular cylindrical
shells.

In the general solutions of shell equations, axial factors are usually introduced. But few literatures
have discussed the physical meanings of the axial factors. It has been numerically proved that the modes
associated with pure imaginary axial factors conform to the shear diaphragm end conditions of a finite
shell of length [19]. The analysis in this paper complements the author’s previous work [19] in the sense
that it investigates the physical meaning of the axial factors both numerically and analytically, and the effects
of the shells’ parameters and hydrostatic pressure are also studied. In this paper, a general solution using
exponential functions for the modal displacements along both the axial and the circumferential directions is
presented.

The investigation into the problem of the cylinder stiffened by ring stiffeners uses a ““‘smeared frame”
approach, and represents the discretely reinforced cylinder by a uniformly orthotropic cylinder. When the
stiffener spacing increases or becomes irregular or if the wavelength of the eigenmode becomes smaller than
the stiffener spacing, this approach is no longer useful. The classical linear shell theory of Fliigge [3] is adopted
in the present analysis.
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2. Exact solution of motion equations

The stiffeners are not considered as discrete members, but their effects are averaged or ‘“‘smeared
out” over the shell. Shell equations of motion for a thin-walled circular cylinder, stiffened by evenly
spaced uniform rings (Fig. 1) under hydrostatic pressure, are given below according to Fliigge’s shell
theory:
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The forces and moments are given in the Appendix.
The general solution for the equations can be written in the following form:

(tn(x, 0), 0,(x, 0), wo(x,0)) = (Up, Vyy Wy)er/Reeit, )

where the axial factor 4 is a complex number.
Substituting Eq. (2) into Eq. (1), it can be written as

[ij]{Um Vo, Wn}T = {0} Js k=1,2,3. (3)

The elements of the coefficient matrix Ly are given in the Appendix.
The nondimensional circular frequency and hydrostatic pressure used in Eq. (3) are given as

2\ p2

szp(l EH )R o, 4)
,_OR(1— )

Q== (5)

For the unstiffened cylinder case, the coefficient matrix of Eq. (3) is symmetrical. The coefficient matrix that
contains the influence of hydrostatic pressure is always antisymmetric.
For nontrivial solutions of Eq. (3), one requires

det(Lyx) =0; jk=1,2,3. (6)
The determinant can be expressed as
F(o, n, 4, Q') =0. (7

Assuming a known vibration frequency and a number of circumferential waves n, we can obtain an eighth-
order algebraic equation for A:

Py)¥ + P2’ + Pyt + P2 4+ Py = 0. (8)

N
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Fig. 1. Ring-stiffened circular cylindrical shell.
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The roots of Eq. (8) usually have the form [6]:

A==tk tiky, ks, Liky

where k; (j =1, 2, 3, 4) are real quantities.
Analytical solutions for Eq. (8) can be written as

where

3. Numerical examples

(h12)" =T6 — @ —% Ay — 43%;
(J34)? =T16 — @+% Ay — 431—1,
(7s6) =Ti6 + @ —% A+ 4\//1;—1;
(J28) =Ti6 + g—i—% Az + 4\//1%;,

I'y = P} —3P,Ps + 12P,Ps,

Iy = 2P} — 9Py P4Ps + 27P P} + 27P3 Py — T12P P4 Py,
[y= (=41 +13)'?, Ty=Ty+Ts,

rs=ry? rIe=2"r,

I, =P/4P, Tg=TI5/3P2'3,

Ty =T¢/3TY*Ps, T'g=—8P,/Ps,

'y =P}/P], T=4P4Ps/P;,

3= —2Py/3P;, TI'4=P:/2P;,

I'is= —1/3P2'3, T'g = —Pg/4Ps,

[y = —4Py/3Ps, T'x=—I¢/3°Ps,

M=Tp+T7+Ts+Ty, A=Tu+T7+Tg+11505s,

A3 =Ty =T+ T

333

©)

(10)

An examples is studied in the present analysis. The assumptions for the basic parameters of shells and
stiffeners are [20]: 7 =0.119 x 10>m, R=10.37x10°m, d»=3.14x 10>m, b, =0.218 x 10 >m, h, =
0.291 x 10?>m, and p = 0.3, E = 2.06 x 10" N/m>.

The roots of Eq. (8) are computed for the following five cases:

(1) an unstiffened shell with Q variation for Q' = 0 and n = 3.

(2) an unstiffened shell with Q variation for Q' =0 and n = 9.

(3) an internal-ring stiffened shell with Q variation for Q' = 0.008 and n = 3.
(4) an unstiffened shell with Q variation for Q' = 0.008 and n = 9.

(5) an internal-ring stiffened shell with Q variation for Q' = 0.008 and n = 9.

The results from Eq. (10) are shown in Figs. 2—6 for nondimensional frequencies. At any frequency, four
distinctly different values of / are seen to exist, although only two may be seen on the figures. This is due to
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Fig. 3. Roots of Eq. (8) for unstiffened cylinders (n =9, Q = 0).

curves 1, 2 and 3, 4 representing coincident complex conjugate pairs. Each curve has its negative counterpart,
meaning that eight A exist altogether at any frequency. The phrases are —mn/2 and 0 indicate that A is pure
imaginary or real, respectively.

It can be seen in the figures that curves 1 and 2 always translate to two curves representing pure real roots at
point A from coincident complex conjugate pairs. Curves 3 and 4 always represent pure imaginary roots and
real roots, respectively, over the frequency ranges calculated, except in Fig. 3. Fig. 3 shows that curves 3 and 4
represent coincident complex conjugate pairs in the very low frequency range, and translate to curves 3 and 4
at point B.

A further comparison made between Figs. 3 and 5 shows that hydrostatic pressure delays the appearance of
bifucation point A, and increases the amplitude of the pure imaginary roots markedly. Hydrostatic pressure
does not effect curves 1, 2, 4 very much. Examination of Figs. 2 and 3 shows that point A appears much later
in high-order vibration than in low-order vibration. The stiffeners affect mainly the initial values of the pure
imaginary roots on comparing Fig. 5 with 6.
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Fig. 5. Roots of Eq. (8) for unstiffened cylinders (n =9, Q' = 0.008).

3.1. The physical meaning of pure imaginary roots

The above calculations show that Eq. (8) has the pure imaginary roots as +i4, for certain combinations of
(w, n, Q). Substituting 2 = +i4, into Eq. (8), Eq. (8) can be rewritten as

P32t — Peib + Pyit — Pyl + Py = 0. (11)

In order to investigate the physical meaning of the pure imaginary roots, the classical separation of variables,
method for determining the natural frequencies of cylinders with shear diaphragm boundary conditions is
deduced here. A comparison will be made between two approaches. Suppose that the cylinders supported at
both ends by shear diaphragms (SD-SD) have a certain length L for classical analysis. The shear diaphragm
boundary conditions can be closely approximated in physical application simply by means of rigidly attaching
a thin, flat, circular cover plate at each end [6].
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Fig. 6. Roots of Eq. (8) for internal-ring cylinders (n =9, Q' = 0.008).

Consider the closed circular cylindrical shell of finite length L which satisfies the boundary conditions
v=w=N,=M,=0 atends. (12)
Generally, deformation functions for the boundary conditions are given as follows:

Upn(X, 0) = U,y 08(n0)cos(Ac1X)Cos i,
Vpn(x, 0) = V0 sin(n6)sin(Ag X)cos we t,
Wiin(x, 0) = W, cos(nf)sin(Aqx)cos wgt, (13)

where Ay = mnR/L.

Substituting Eq. (13) into Eq. (1), a set of equations similar to Eq. (3) is obtained. For nontrivial solution of
equations, the determinant of the coefficient matrix must be zero. This leads to an equation with variables
(e, m,n, Aq, QL) as follows:

FZ(wamana )"Clﬂ Q::l) =0. (14)

Eq. (14) is a cubic equation with variable vibration frequency w? when Ay = mnR/L is given. Each
combination of m and » has three roots of frequency. The minimum root among the roots for all combinations
of m and n is namely the basic frequency of the cylinder.

Eq. (14) can also be written as an eighth-order algebraic equation for A:

PS4 PSS + Py + Pyl + Py = 0. (15)

A comparison was made between {Pg, P, P4, P2, Py} and {P’ , Py, Py, P, PE)}; it is interesting to note that:
Py=Ps, P,=-Ps, P,=P, P,=P, P,=P,. (16)
These findings appear to prove that Egs. (11) and (15) are the same. This reasoning certainly seems to offer a
mathematical explanation for the conclusion that, when the axial factor is a pure imaginary number, the

general solution, Eq. (2), for the shell equations appears to describe the vibration mode of a cylinder with a
certain length and shear diaphragm boundary conditions. The length of the cylinder can be obtained from

mnR
1
- (a7

After a pure imaginary root is obtained from Eq. (8), the length (L/R) of the cylinder with shear diaphragms
supported at ends is determined according to Eq. (17). Then the, corresponding natural frequency w from
Eq. (14) is compared with the given frequency w, which is given before Eq. (8), and is resolved. Incidentally,

Msl =
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if the cylinder is shear diaphragm supported, the length of the cylinder equals to m multiplies the half-
wavelength in the axial direction; hence, only m = 1 is discussed in the paper.

A numerical example is given for comparison in Table 1. Good agreement can be seen between the approach
presented and the classical method for cylinders with shear diaphragm boundary conditions on comparing the
second column with the fifth column.

3.2. Effects of Stiffeners on A

The effects of stiffeners on pure imaginary roots are studied here. The symmetrical-ring stiffened cylinder is
introduced here to make a comparison. The eccentricity of the centroid of ring stiffener section e, equals to
zero when the ring is symmetrical.

Fig. 7 shows that the values of |/,| increase along with an increase of frequency. The starting points of the
pure imaginary roots in Fig. 7 are the bifurcation points of the complex conjugate pairs. In order to compare
the difference of the curves in Fig. 7 clearly, curves of differences based on internal-ring cylinder are shown in
Fig. 8. The difference is defined as

571 — 4]

Diff, x 100%, (18)

Table 1
Comparison with classical method

Present approach (Eq. (7)) Classical method (Eq. (14))

Q || La(x107%) Qu
n=3

0.1 1.0362 31.44018 0.10000
0.5 3.2444 10.04137 0.50000
1.0 11.3558 2.86886 1.00000
1.5 18.6236 1.75129 1.49792

Unstiffened shell, 9’ =0, /= 0.119 x 1072m, R = 10.37 x 102m, E = 2.06 x 10" N/m?, u = 0.3.

10 - -
internal-ring
----- external-ring
g L7 symmetrical-ring
" hr=0.582x102m
n=2
6 |
o«
<
4
2
0

Fig. 7. Effects of stiffeners’ locations (Q = 0).
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where )Li corresponds to the internal ring; /15’3 corresponds to the external ring and the symmetrical ring,
respectively.

It can be seen in Fig. 8 that |/, obtained from the external-ring cylinder are greater than those
obtained from the internal-ring cylinder when ©2<0.235, but smaller when Q> 0.235. |/,| obtained from the
symmetrical-ring cylinder are always the smallest in the frequency ranges. This indicates that the natural
frequency of the symmetrical-ring cylinder is always the highest in the three location forms.

The effects on |/, of stiffeners’ parameters with no initial pressure(Q' = 0) are shown in Fig. 9. It can be
seen that the stronger the ring, the smaller the |4, meaning that the increase of stiffeners’ stiffness heightens
the cylinder’s natural frequency. Fig. 10 shows the difference between || obtained from the stiffeners of two
different sizes, and the difference is defined as Eq. (18). It can be seen that the difference fluctuates from large
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Fig. 8. Curves of difference in stiffeners’ locations.
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Fig. 9. Effects of stiffeners’ parameters (Q = 0).

to small along with a reduction in shell length.
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Fig. 10. Curves of difference in stiffeners’ parameters.
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Fig. 11. Effects of stiffeners’ parameters(Q’ = 0.008).

When the hydrostatic pressure exists(Q' = 0.008), the effects of stiffeners’ parameters are presented in
Fig. 11. The hydrostatic pressure increases the value of ||, and the increase of stiffeners’ stiffness increase the
cylinder’s natural frequency as we found with no hydrostatic pressure. As multiple values appear with
increasing frequency, we cannot obtain the difference line between the two lines in the whole frequency range.
Before multiple values appear, the hydrostatic pressure reduces the difference between the two lines in the low-
frequency range, but heighten the difference in the high-frequency range.

3.3. Effects of initial stress on A

In this paper, hydrostatic pressure is considered as the initial stress. Figs. 12 and 13 show the
effects of hydrostatic pressure on the pure imaginary roots. It can be seen that hydrostatic pressure reduces
the natural frequency of cylinders with a certain length. Hydrostatic pressure has much more effects
on the vibration behavior when the vibration order is higher. Curves start at zero frequency, which
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Fig. 13. Effects on low-order vibration of hydrostatic pressure (n = 9) (internal-ring, b, = 0.218 x 1072m, A, = 0.291 x 10> m).

indicates that the hydrostatic pressure is just the buckling pressure of the cylinder with shear diaphragm
ends.

4. Conclusion

When solving the vibration problem of ring-stiffened cylinders associated with arbitrary boundary
conditions, exponential functions are used and axial factors are introduced here. An cighth-order algebraic
equation for this axial factor is derived. The physical meaning of the axial factor is studied. Both analytical
and numerical researches prove that when the axial factor is a pure imaginary number, the cylinder appears to
have a certain length with shear diaphragm boundary conditions. The effects of stiffeners’ parameters and
hydrostatic pressure on the axial factor are studied.

Hydrostatic pressure increases the module of the pure imaginary roots markedly, but does not affect the
other curves very much. The stiffeners affect mainly the initial value of the pure imaginary roots. The natural
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frequency of the symmetrical-ring stiffened cylinder is always the highest in the three disposal forms.
Increasing the stiffeners’ stiffness can increase the cylinder’s natural frequency.

Appendix A. Forces and moments

Eight internal forces including membrane forces N,, Ny, Ny and Ny,, bending moments M, and M, and

torsioning moments M,y and My, are given

6u Dd*w
Ny _B[a <R66 R)} R@’

w
N":B[(H“z (R@()‘ﬁ)

2

Nox = I_TMB<1§au9+ax> +(1 ;Il;)D [RZGH_Raaxvge]’
Ny = I;LB<,§£IQ+6,Z> +% [Rzz;gfrlféj’
M, :D{—(l +1) <%+%) _“%%2(%_%
My =(1 —M)D(_%_%)’

%w 1 /fOu Ov o*w
Mo=D|(1— (-2 4 L (o o)y _, 9w
L {( “)( Roxd0 T 2R (R@H 6x)> > Rox00

Appendix B. The elements of the coefficient matrix

1 —
L =22+%

2
(1 + k)in)* = ¢ ((in)2 + %) +@

1 - .
L12 = ( 3 'u) iln,

L13= —)u,u—i-kf—
(I-w,.
5 y)

vk,

%mn)2 — 0,

Ly =

/v+ *w _2
R RO®? R

( *w +K>
R0 R*)’

)|
|

2
Ln=(1+ ,uz)(li’l) _ kCz(ln) -|- (1 + 3]{)}.2 o ((il’l)2 +%) + an

Los = — (14 pin+ & ")ﬂ

(1)
2

ink + n, [in + (in)*] k — (y(in)’

Ly =Ju—2k+ Min)’k + Q')

@ 5 W 2ink + L(in)’k — Q'in,

13 = k{=2* = 2 +n,)2[{n) — (1 + n)([in)* — 2 +20 +1

)2
- 0@+ 5 ) + 22

L3y = (1+ pp)in —

k+ Q'(in),

2)(in)® — (1 + )}
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